New York State Student Learning Objective: Regents Chemistry/Grade II

All SLOs MUST include the following basic components:	
Population	These are the students assigned to the course section(s) in this SLO - all students who are assigned to the course section(s) must be included in the SLO. (Full class rosters of all students must be provided for all included course sections.) Three sections of Regents Chemistry students, grouped heterogeneously (75 total students)
Learning Content	What is being taught over the instructional period covered? Common Core/National/State standards? Will this goal apply to all standards applicable to a course or just to specific priority standards? New York State Physical Setting/Chemistry Standards: Standard 1: Analysis, Inquiry, and Design: Students will use mathematical analysis, scientific inquiry, and engineering design, as appropriate, to pose questions, seek answers, and develop solutions. Standard 2: Information Systems: Students will access, generate, process, and transfer information using appropriate technologies. Standard 4: The Physical Setting: Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical development of ideas in science. Standard 6: Interconnectedness: Common Themes: Students will understand the relationships and common themes that connect mathematics, science, and technology and apply the themes to these and other areas of learning. Standard 7: Interdisciplinary Problem Solving: Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.
Interval of Instructional Time	What is the instructional period covered (if not a year, rationale for semester/quarter/etc)? 2012-2013 School Year
Evidence	What specific assessment(s) will be used to measure this goal? The assessment must align to the learning content of the course. 1. District-wide diagnostic assessment (District-created pre-assessment that is based on physical science/chemistry questions from the New York State Grade 8 Intermediate-Level Science Test, along with mathematics concepts utilized during the course), which will be administered at the beginning of the school year. 2. New York State Physical Setting/Chemistry Regents Exam will be used as the summative assessment.

Baseline	What is the starting level of students' knowledge of the learning content at the beginning of the instructional period? 1. 97% of students* passed the Living Environment and 92% of students* passed the Geometry Regents Exams from the previous school year. 2. On the diagnostic assessment, students scored an average of 70% * on basic principles of Chemistry and mathematics. (* \%ages to be determined from the specific student population and diagnostic pre-assessment)																				
Target(s)	What is the expected outcome (target) of students' level of knowledge of the learning content at the end of the instructional period? The expected outcome is that 70% of students will score a 65% or higher on the Physical Setting/Chemistry Regents Exam at the conclusion of the course.																				
HEDI Scoring	How will evaluators determine what range of student performance "meets" the goal (effective) versus "well-below" (ineffective), "below" (developing), and "well-above" (highly effective)?																				
	HIGHLY EFFECTIVE			EFFECTIVE									DEVELOPING						INEFFECTIVE		
	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	96- 100 $\%$	92- 95%	$87-$ 91%	$\begin{array}{\|c} 83- \\ 86 \% \end{array}$	$\begin{aligned} & 80- \\ & 82 \% \end{aligned}$	$\begin{gathered} 76- \\ 79 \% \end{gathered}$	$\begin{aligned} & 72 \\ & 75 \% \end{aligned}$	$\begin{gathered} \text { 69- } \\ 71 \% \end{gathered}$	$\begin{gathered} 70- \\ 67 \% \end{gathered}$	$\begin{gathered} 66- \\ 63 \% \end{gathered}$	$\begin{gathered} 62- \\ 59 \% \end{gathered}$	$\begin{gathered} 58- \\ 55 \% \end{gathered}$	$\begin{gathered} 54- \\ 51 \% \end{gathered}$	$\begin{array}{r} 50- \\ 47 \% \end{array}$	$\begin{gathered} 46- \\ 43 \% \end{gathered}$	$\begin{gathered} 42 \\ 39 \% \end{gathered}$	$\begin{array}{r} 38- \\ 35 \% \end{array}$	$\begin{gathered} 34- \\ 31 \% \end{gathered}$	$\begin{aligned} & 30- \\ & 27 \% \\ & \hline \end{aligned}$	$\begin{gathered} 26- \\ 23 \% \end{gathered}$	<22 $\%$
Rationale	Describe the reasoning behind the choices regarding learning content, evidence, and target and how they will be used together to prepare students for future growth and development in subsequent grades/courses, as well as college and career readiness. The diagnostic assessment used, was one that determined the mathematical and basic content-specific knowledge of current students. Solving algebraic equations is a key skill to have mastered in order to have success in this course. Furthermore, many basic Chemistryrelated concepts were taught in the intermediate years (Grades $5-8$) of the students' schooling. Therefore, the diagnostic exam used was appropriate. According to the School Report Card, 67-70\% of students have scored a 65% or higher on the Regents Chemistry Exam. Increasing the number of students who score a minimum of a 65% is a department-wide goal, The HEDI scoring grid should be adjusted using the baseline information.																				

The document above was created by Michael Baroody, Joanne Keim, and Michael Foster.
April 11, 2012

